Distinct mechanisms govern the localisation of Drosophila CLIP-190 to unattached kinetochores and microtubule plus-ends.

نویسندگان

  • Nikola S Dzhindzhev
  • Stephen L Rogers
  • Ronald D Vale
  • Hiroyuki Ohkura
چکیده

CLIP-170 was the first microtubule plus-end-tracking protein to be described, and is implicated in the regulation of microtubule plus-ends and their interaction with other cellular structures. Here, we have studied the cell-cycle-dependent mechanisms which localise the sole Drosophila melanogaster homologue CLIP-190. During mitosis, CLIP-190 localises to unattached kinetochores independently of spindle-checkpoint activation. This localisation depends on the dynein-dynactin complex and Lis1 which also localise to unattached kinetochores. Further analysis revealed a hierarchical dependency between the proteins with respect to their kinetochore localisation. An inhibitor study also suggested that the motor activity of dynein is required for the removal of CLIP-190 from attached kinetochores. In addition, we found that CLIP-190 association to microtubule plus-ends is regulated during the cell cycle. Microtubule plus-end association is strong in interphase and greatly attenuated during mitosis. Another microtubule plus-end tracking protein, EB1, directly interacts with the CAP-Gly domain of CLIP-190 and is required to localise CLIP-190 at microtubule plus-ends. These results indicate distinct molecular requirements for CLIP-190 localisation to unattached kinetochores in mitosis and microtubule ends in interphase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLIP-170 facilitates the formation of kinetochore-microtubule attachments.

CLIP-170 is a microtubule 'plus end tracking' protein involved in several microtubule-dependent processes in interphase. At the onset of mitosis, CLIP-170 localizes to kinetochores, but at metaphase, it is no longer detectable at kinetochores. Although RNA interference (RNAi) experiments have suggested an essential role for CLIP-170 during mitosis, the molecular function of CLIP-170 in mitosis ...

متن کامل

Kebab: Kinetochore and EB1 Associated Basic Protein That Dynamically Changes Its Localisation during Drosophila Mitosis

Microtubule plus ends are dynamic ends that interact with other cellular structures. Microtubule plus end tracking proteins are considered to play important roles in the regulation of microtubule plus ends. Recent studies revealed that EB1 is the central regulator for microtubule plus end tracking proteins by recruiting them to microtubule plus ends through direct interaction. Here we report th...

متن کامل

Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system

Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end-tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very diff...

متن کامل

Microtubule plus-end loading of p150(Glued) is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells.

Microtubule dynamics and function are regulated, at least in part, by a family of proteins that localize to microtubule plus-ends, and include EB1, CLIP-170 and the dynactin component p150(Glued). Plus-end pools of these proteins, notably dynactin, have been invoked in a number of ;search-and-capture' mechanisms, including the attachment of microtubules to kinetochores during mitosis and to end...

متن کامل

MAST/Orbit has a role in microtubule–kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity

Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant emb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 118 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2005